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The immersed boundary technique is used to model the interaction of swimming filaments 
in a viscous, incompressible fluid. Fluid quantities are represented on a grid, and the 
immersed filaments are each represented by a discrete collection of moving points. The effects 
of phase differences and proximity of the filaments on energy dissipation and swimming speeds 
are studied. The computed results are compared with previous asymptotic analysis. Further- 
more, we present case studies which exhibit phase-(un)locking phenomena undetectable using 
previous asymptotic analysis. ‘D 1990 Academic Press, Inc. 

1. INTRODUCTION 

The principal means of swimming of aquatic animals is to pass waves of lateral 
displacement down the body. This type of propulsive motion spans the whole 
spectrum of Reynolds numbers, a nondimensional quantity which describes the 
ratio of inertial forces to viscous forces in the induced flow. For instance, the 
Reynolds number of a swimming eel is about lo”, the nematode’s about 1, and that 
of a spermatozoa about lop3 [S]. 

It has been observed that when spermatozoa swim close together they tend to beat 
in synchrony [ 11. When fish swim in schools it is also noticed that there are regular 
patterns of motion [2]. Ciliated organisms exhibit metachronal waves; cilia close 
together beat in synchrony, but there is a continuous phase difference along the 
surface [3]. One possible explanation for this type of coordinated motion is that 
“information” is transmitted by the fluid between the waving filaments. 

In [4] we described a computational model of this undulatory mode of locomo- 
tion which was based upon the immersed boundary technique of Peskin [S]. There 
we analyzed a single oscillating, massless filament immersed in a two-dimensional 
fluid. We studied how dissipation of energy and overall swimming speed depended 
upon many parameters, including the Reynolds number and the wavelength, 
amplitude, and frequency of undulation. 
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Due to the special way in which this computational model represents the 
immersed boundary, it is possible to study the swimming motion of more than one 
organism in the same domain of fluid. The effects of phase differences and prcx~mny 
of oscillating filaments can be measured. 

The swimming of neutrally buoyant organisms immersed in a viscous, incem- 
pressible fluid constitutes a coupled mechanical system. The state of the system at 
any time I is determined by the fluid velocity field uix, P) and the positions of the 
material points of the organisms X(s, t, !), where s is an arclength 
denotes the particular organism. 

The fluid is governed by the incompressible NavierrStokes equation: 

Here p = density, p = viscosity, u = velocity, and F = pressure 
The first equation is Newton’s second law: mass density s acceleration = force 

density. The second states that the fluid is incompressible. The forces which appear 
are those due to pressure. viscosity, and the external force F(x, .t). The exrernai 
force is used to represent the force of the organisms on the fluid. It is a delta 
function layer of force supported only by the regions of fluid which coincide with 
material points of an organism; away from these points the external force is zero. 
Since an organism is considered elastic and massless, the strength of the d&a 
function force layer is determined at each instant by the local c~)n~gurat~o~. of t”?e 
organism. Representing the immersed swimming organisms as a singular furce field 
in the fluid domain is the basis of the computational model. 

The boundary conditions to be satisfied at the surfaces X!s, r, i) defmed by :+e 
organisms are 

This states that the velocity of a point on an organism must be the same as the Guid 
velocity at that point. 

The solution of this highly nonlinear coupled system is achieved computacionally 
as described in (41. In this paper we will briefly outline the computatiomd scheme 
(Section 2). We will compare our results with the asymptotic analysis of 6. I. 
Taylor [ I] for zero Reynolds number flow (Section 3 j. Finally we will present the 
results of case studies which exhibit phenomena undetectable using previous 
asymptotic analysis. 

2. COMPUTATIONAL MODEL 

We cover our two-dimensional fluid domain with a square grid ofi which we 
define the fluid quantities u:.= u(id.u, jdx. ndt), pz and I?:.;. In contrast to Ihis 
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Eulerian description of fluid quantities, the immersed organisms are modeled by 
collections of moving points Xt.,, I= 1, 2, 3, . . . . nb, where nb is the number of 
organisms within the domain and k= 1, 2, 3, . . . . m(nb), where m(Z) is the number of 
discrete points comprising organism 1. These Lagrangian points do not coincide 
with grid points. The state of the system at time t=nAt is determined by II”. and 
X; [. From these, we need to advance another time step to determine II;+’ and 
X n’+ 1 

k,I . 

As explained in [4, 51, the coupling between fluid and boundary quantities 
occurs in two ways: 

( 1) The spreading of the force density f(s, t, I) defined on the immersed 
boundaries to the grid to determine the external force field F(x, t), 

F(x, t) = : 1 f( s, t, I) 6(x - X(s, t, I)) ds. 
(-1 4 

(2) The interpolation of the fluid velocity u(x, t) to material points in order 
to satisfy the no-slip condition 

dX 
dt= u(X(s, t, I), t) = !- u(x, t) 6(x - X(s, t, I)) dx 

R 

for /= 1, 2, 3, . . . . nb. (Note that 6 is the two-dimensional delta function.) 

These integral are discretized as sums, 

F;= c c f;,D&X,,,) As 
I=1 k 

U;,,= c u;D&X,,,) Ax’, I= 1 3 . nb, 3 -> . ., 
ii 

where D, is the discrete approximation to the two-dimensional delta function 
introduced by Peskin [S]. 

Since the immersed organisms are elastic and massless, the force densities are 
determined by the boundary configurations at time t. We want to specify a force 
density which will allow us to impose (approximately) a given swimming motion. 
This motion will be the time-dependent configuration of the organism relutiue to 
itselJ: The actual displacement relative to the grid is not present, but determined by 
the solution to the fluid equations. 

As presented in [4], we use forces which are derived from a time dependent 

energy function &(Xl.l, X2,,, -., X,nco.l, t) which is invariant under translation and 
rotation: 
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El is chosen so that E,> 0 and E,= 0 when the boundary configuration is as 
desired. 

We want to control the arclength between successive points on an immersed 
boundary and the angle formed by the two “links” at each point: 

Here 3 = (0, 0, 1). This is zero when the arclength is AS and the “curvature” at the 
point X,, is C,,(t). S1 and S2 are stiffness parameters which control how closely 

the configuration is enforced. 
This energy function can be adjusted to enforce many different configurations by 

choosing an appropriate driving function C,,(t). Note that t 
dependence of the swimming motion is established. 

In this paper we will be considering sinusoidal motion of the form 

n this case 

y=bsin(k.u-w!) 

C,(t)= -baby sin(K-s-wr) 

x = kds. 

Once the force density is computed and spread to the grid to define F8;“,? the 
Navier-Stokes equations can be solved on a regular domain using simple boundary 
conditions. For this purpose we use Chorin’s finite difference scheme [6] on a 
square, periodic grid. Once the fluid equations are solved, the velocity field 1s inter- 
polated to the material points. These points are moved at the local fluid velocity, 
This completes one time step. 

3. INTERACTION OF SWIMMING SXEEETS 

In his paper of 4951, 6. I. Taylor analyzed the swimming motion of a doubly 
infinite sheet which undergoes periodic deformations about an unperturbed 
centerline y = 0. These deformations were taken to be very small compared to the 
wavelength of the sheet and of constant amplitude F. A two-dimensional slice of the 
sheet is of the form 

y = b sin(rtx - wl Jo 

These coordinates are taken with respect to “axes which are fixed relative to the 
mean position of the particles of the sheet” [ 11. This sine wave travels to the right 
with speed V= U/K. 
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Using the linear Stokes equations to describe zero Reynolds number flow, Taylor 
calculated that the mean dissipation of energy (averaged over a period 27r/o) on 
one side of the sheet is 

where p is the viscosity of the fluid. This was calculated using an asymptotic 
expansion of the stream function and boundary conditions in powers of bK only up 
to O(bK). However, using this first-order expansion, it can be shown that the mean 
swimming speed of the sheet is zero. Up to the first order in the amplitude, the 
sheet does work, but it does not swim. When the asymptotic expansion is taken to 
second order in bK, there is indeed swimming. A useful nondimensional parameter 
is the mean swimming speed U divided by the wavespeed V = Q/K. Using this 
higher order expansion, Taylor arrived at 

1 -;b%‘+0(b6ic6) 

where the direction of swimming is opposite to that of the wave. 
In [4] we compared our calculations with Taylor’s expressions for both energy 

dissipation and swimming speed in the case of a single doubly infinite sheet. 
In this section, we study the interaction of more than one waving sheet immersed 

in the same domain of fluid. Each sheet is taken to have the same amplitude, 
wavelength, and frequency, but the phase difference is varied. 

Consider two sheets whose centerlines are a distance of 2h apart: 

J,= +h+bsin(rcs-or+d) 

y2 = -12 + b sin( rc,y - it - 4). 

Waves of the same amplitude travel down both sheets with the same speed, but 
the phase of the second lags behind that of the first by an angle 2& 

In this case, Taylor assumes that the stream function is 

$ = (A i y sinh KJ' + B, cash ~1’) cash 4 sin( rc+X - ot) 

+ (A? cash KY + B, sinh K)‘) sin 4 cos( KY - ot). 

Boundary conditions are then imposed on the centerlines of the sheets: 

I’= fh 

w 
ax= -wbcos(ks-ot-q3) I’= -Il. 
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Using these conditions, the constants A r ) A:, B,, B, are obtained in terms of the 
parameters b, CO, K, and 1.1. The mean rate of dissipation of energy between the :wo 
sheets is calculated to be 

where 

sinh’ Eli 
(y= 

Sinh Kh COSh K/I+ K/l' I - Kl .i 

This is also equal to the mean rate at which a unit length of the sheet does work 
on the fluid. The above expression achieves its minimum when # =O (sheets in 
phase) and its maximum when 4 = 742 (sheets in opposite phase j. The ratio or” this 
maximum energy dissipation to minimum energy dissipation increases 2s the 
distance between the sheets decreases. Waving filaments close together reqGre 
much less effort if they beat in unison as opposed to beating cut of phase. 

This asymptotic analysis is restricted to zero Reynolds number flow and smell 
amplitude motion. The form of the stream function also does not allow for any 
propulsive motion. U’aaing sheets are being studied, not swimmilzg shee:s. 

Our computational model solves the full NavierStokes equations, and theretkre 
the effects of inertia can be considered. Also, we can study actual swimming of 
neigkboring sheets, which the asymptotic method outlined above excludes. In this 
section we shall compare our results with the asymptotics for energy dissipation. 
We will show that certain phase differences are not stable-the swimming speeds of 
neighboring sheets differ. In the next section, we will present two case studies vl;hich 
show that these differing speeds provide a mechanism whereby sheets can alter t.heir 
phase differences until a stable configuration is achieved. 

In order to stimulate the doubly infinite sheets, we impose periodic boundary 
conditions on our square computational domain. The length of one side of this 
domain is equal to one wavelength of the sine wave, ~E/K. The centerfines of the 
two filaments are placed one half of one wavelength apart. Each filament extends 
from one end of the domain to the other. We have r.uplicit/y linked the first and kast 
point (module wavelength) of the immersed boundaries by coupling these points in 
the energy function. This simulates the infinite extent of the sheet. A 
because of the periodic boundary conditions in the vertical as well as 
direction, we are actually modelling an infinite array of equally spat 
infinite extent. We stress that this technique can model more realistic organisms of 
fmite extent, but we wish to compare our results with tire asymptotics. 

All of the computations presented in this paper were performed on the CihAY 
X-MP at the Pittsburgh Supercomputing Center. Figure I shows typical ffow fief& 
in the cases: 
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( 1) 4 = 0 sheets in phase 
(2) IJS = 7r/4 sheets 90” out of phase 
(3) 4 = 7112 sheets in opposite phase. 

In this particular case the wavelength was 0.2 cm, and the amplitude 
b = 0.005 cm. These are snapshots of the streamlines and positions of the 
boundaries. Because of the periodicity conditions, two domains are placed side by 
side. Notice that the fluid directions between the boundaries in the in-phase case are 

a 

b 

C 

q!l = 7r/2 

FIG. 1. Positions of filaments and streamlines of velocity field in the cases (a) d=O, (b) d=n./4, 
(c) q5 = r/2. Dimensions of rectangle are 0.4 cm x 0.2 cm. 
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Parameter Symbol 

TABLE I 

Phase Studies 

Units I II III 

Wave number 
Frequency 

Density 
kmplitude 
Viscosiry 
Reyno!ds number 
Proximity 

ti cm-’ IO?2 !O, 1or: 
co s-l Sn all 877 
P gm;cm3 1 L 1 
E cm 0.002 0.002 0.00’ 
P gm,‘cm s 0.01 0.05 0.05 
R 2.1 0.5 0.5 
2h cm 0.1 0.I 0.05 

mostly vertical, wheras in the opposite-phase case they are mostly horizontaL The 
latter case bears a striking resemblence to the flow fields induced by perista!!ic 
pumping in two dimensions [7]. 

In the following phase studies I and II, the parameter values in Table I were 
fixed, but the initial phase difference between the two filaments was varied from 
q4 = 0 to q5 = ~$2 in increments of n/16. We shall use a Reynolds number based upon 
wavelength, 

&pw. 
,uti’ 

FHPSE/PI 

FIG. 2. Phase Study I. The mean dissipation of energy averaged orer a period vs phase $iffe:ence 
measure Q/K, R v 2.5. 
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I”lEF>~~I DISSIPATION OF ENERGY: EFS=. 032 
6.00 / , 

MU=. 05 

,a 
-.125 0.125 0,375 0.625 0.Ei5 1.125 

PHA,SE/P I 

FIG. 3. Phase Study II. The mean dissipation of energy averaged over a period vs phase difference 
measure @:‘n, R 2 0.5. 

PI E r? I‘r G I S P 0 F E r,l E R G ‘y’ : i h P I-; /A S E 
00.00 , , , 

AHPLITUDE 

FIG. 4. The mean dissipation of energy averaged over a period vs amplitude. Here $=O and the 
other parameters are as in Phase Study II. 



The calculations were performed on a 64 x 64 grid with 128 poicts comprising 

each immersed boundary. The velocity field was initialized to zero. In each numeri- 

cal experiment, the code was run until an approximate i?ericdic) steady state was 
reached, which took at most four periods. By approximate steady state we mean 
that the average energy dissipation over a period was approximately equal to t&z 
average rate of working; the average rate of change of kinetic energy was smal!. 

Figure 2 shows the total average energy dissipation in the fluid domain compused 

in phase study I tR z 2.5). The *‘s indicate the computed values, and the solid curve 

indicates Taylor’s asymptotic formula. For each phase difference the f~orce is 

specified so that the same, constant amplitude oscillations of tlhe sinusoidal filamsnt 

are enforced. In each phase study this amplitude was E = 0.002 cm, I ‘i4 21’ a 
wavelength. Figure 3 shows the results from phase stu y II (R 2.0.5 1. Kate iho;: 
much closer the asymptotic predictions are to the computed values in this much 

lower Reynolds number case. Also, the energy dissipation when the sheets are in 
opposite phase is about twice as much as when they are in phase. 

Using the same parameter values as in phase study II. we fix the phase dii‘ference 

a’, zero, but vary the amplitude from 1 % of the wavelength, up to 5 % of the 

wavelength. The results of these computations are shown in Fig. 4. Note the 
excellent agreement with the asymptotics. For larger amplitudes. however, the 

discrepancy increases. 

In both of the above studies, the array of sheets were equally spaced at one haif 
of one wavelength apart. In phase study III (R z 0.5) we space the sheets at one 
quarter of one wavelength apart. The parameter values are given in Table I. In 
order to preserve symmetry and compare with the asymptotiss. we prit {our 

immersed boundaries in the computational doma.in. Figure 5 shows a snapshot of 
the streamlines and boundaries in the opposite-phase case. Figure 6 shows the 

computed energy dissipation vs the asymptotics. Since Taylor’s formula gives rhs 
energy dissipation between two sheets per unit length of one sheet, we Am:usi 
multiply the formula by 4 x 0.2 in order to calculate the total energy dissipation in 

FIG. 5. Snapshor of streamlines and flowfields in the opposite-phase cas2 Here thsr2 are fc>ui 

immersed boundaries per computational domain. 
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0.00 1 I -.125 0.125 0.475 0.625 0.875 1.125 

PHASE/P I 

FIG. 6. Phase Study III. The mean dissipation of energy averaged over a period vs phase difference 
measure &b/n, R 2.5. 

the domain. Here, the energy dissipation in the opposite-phase case is about twelve 
times that of the in-phase case. 

Thus far, we have only indicated the computed energy dissipation but have not 
commented on the swimming progress. In phase study I, when the sheets start out 
oscillating in phase, the mean swimming velocities over a period were the same: 
U, = U, = 8.95 x 10P4 cm/s. When the sheets were oscillating in opposite phase, 
again they swam at the same velocity as each other, but this time U, = Uz = 
2.52 x 10V3 cm/s. This is a reasonable result, since in the second instance, the region 

TABLE II 

Mean Swimming Velocities in 1O-3 cm/s Phase Study I 

0.895 0.895 
0.502 1.43 
0.312 2.00 
0.349 2.52 
0.599 2.90 
1.01 3.10 
1.52 3.09 
2.04 2.89 
2.52 2.52 



COMPUTATIONAL STUD1 $25 

of fluid between the boundaries is being pushed in the same directioc; the sheets a.~ 
helping each other swim. 

In the other cases in phase study I, C$ = lz,‘16, != I, 2, 3, . ..~ 7. the sheets have 
different mean velocities. This is shown in Table II. This suggests that these phase 
differences give rise to unsteady configurations. One can expect that the velocities 
will adjust the relative positioning of the filaments until they are either in phase or 
in opposite phase, where the swimming speeds of rhe two Claments are equal. We 
conjecture that, depending upon the Reynolds number and the proximity of t;?c 
sheets, one of these steady configurations will be stable and the other unstable. We 
will present case studies in the next section which support this conjecture. 

4. c.4SE STUDIES 

Again, we consider an infinite array of equally spaced doubly infinite way-ing 
sheets, where each sheet oscillates with the same amplitude, wavelength, and 
frequency, but there is a phase-shift between neighboring sheets. We have evidence 
that when the phase-shift 4 = 24 is 0 (in-phase) or $ = 2# is 7c (opposite-phase) the 
mean swimming speed of each sheet is the same, and thus the phase-shifts remain 
at $= 0 or Q’= z, respectively. However, intermediate phase differences 0 < 4 < z 
lead FO unsteady configurations. This is manifested in differing mean velocities of 
neighboring sheets. For instance, refer back to Fig. 1. The first and third flowfields 
corresponding to 6 = 0 and $ = 7c are in equilibrium. We expect that one of these 
equilibria will be stable and the other unstable. The second ~ow~eld, where $= ~2. 
is ar; unsteady configuration. If the top filament were to “swim slower” thaws the 
botrom filament to the left, then at some point they would be ia phase. If the top 
filament were to “swim faster,” at some point they would be in opposite phase. The 
occurrence of “phase-locking” or “opposite phase-locking” will be explored in the 
following two case studies. 

The following numerical experiment used a 04 x 64 square grid, with four 
immersed boundaries of 128 points each. Periodic boundary conditions simula:c a~ 
infinite array of waving filaments spaced equally at one quarter of one wavelength 
apart. The physical parameters and numerical parameters used are presented in 
Table III. The phase speed of the sine wave is 0.8 cm/s, and the period of motion 
is 0.25 s, We initialized the velocity field to zero and the initial phase-s 
$= 7-t/2. The Reynolds number in this case is quite small, approximately 0.2 

In order to study how the velocities will alter the phase differences in the long 
:11n, we ran the code for 32,000 time steps, 160 periods, up to I = 40 s. (This task 
about 12 h of CRAY time,) Figure ‘7 shows snapshots of the filaments and the flow- 
fields at intervals of 4 s, from t = 4 through t = 40 s. The filaments have p 
locked! Figure 8 shows the mean dissipation of energy averaged over each of 3~ 
160 periods. The energy is monotonically decreasing as the phase difference of :he 



306 LISA J. FAUCI 

FIG. 7. Snapshots of the filaments and the flowfields in Case Study 1 at intervals of four second, 

from t = 3 through f = 40 s. 



TIME 

FIG 8. Case Stud!; 1. Mean average dissipation of energy vs period I1 period = 0.25 s. EPS = O.‘Xi !. 
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FIG. 9. Case Study 1. Mean swimming speeds of the filaments vs period. The upper curve (*‘s! 
corresponds to the bottom most filament in the domain, the lower curv: (‘L,‘s) to the neighbxkg 
Filament. The other wo filaments have corresponding velocities due to symmetry. EPS = 0.03. 
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Therefore, 

Given the functions fi($) and f,(6), we would integrate this ordinary differentia; 
equation and determine the evolution of 4. We do not know the explicit form of 
these functions, but we can tabulate their values at different values of 4~ 

The code was run with the same parameter values as in Case Study 1, but with 
the initial phase difference 4 varying from 0 to 7~ in increments of ?s,B, for only four 
periods. The velocities are small enough so that the phase differences barely change 
from their initial values during this short time span These short runs enable LLS to 
tabulate the functions f,(J) and f?(J) for $= !lir;‘& != 0, 1, 2> . ..) 7. 8. The functions 
at intermediate values can be interpolated from these. 

We discretize the initial value problem 

~(l+dl)=ih(f)+nt~(f,(b(r))-jl~jr)j) 

where dr = 0.125 s. 

& 0 ) = lq”2, 

The solution of this differential equation is shown In Fig. 10. We see again hat 
the filaments have phase-locked. 

in this case study, the motion has evolved into one which minimizes the 
expended energy. One is tempted to conjecture that this should always ‘be the case. 
As our next case study will show. this is not true. 

The set-up of this numerical experiment is the same as the foregoing except that 
now we have only two immersed boundaries in the domain. This simulates an 

TABLE III 

Case Studies 

Paiameter Symbol Units I II -- 

Wave number 
Freqtienc) 
Dznsitj 
Amplitude 
‘k’iscosit~ 
Reynolds number 
Proximity 
Grid spacing 
Time step 
Arclength 
Sriffness S, 
Siifhess Sz 

cm-l 
s-’ 

gm;cm’ 
‘cm 

gm.‘cm s 

cm 
cm 
s 

cm 

1% 
SK 
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infinite array of sheets spaced one half of one wavelength apart. The parameters 
used are also presented in Table III. Here the Reynolds number is ten times larger 
than Case Study 1, and the sheets are spaced at twice the distance. 

We ran the code for 48,000 time steps. 240 periods, up to t = 60 s. (This took 
considerably less CRAY time, since we only had two immersed boundaries per 
domain.) Figure 11 shows snapshots of the filaments and the flowfields at intervals 
of 4 s, from t= 4 through t = 60 s. Here, the filaments have “opposite” phase- 
locked! Figure 12 shows the mean dissipation of energy averaged over each of the 
240 periods. Now the energy is monotonically increasing until it levels off. Figure 13 
shows the mean swimming velocities at each of the periods. The upper curve 
corresponds to the top filament and the lower curve to the bottom filament in the 

FIG. 11. Snapshots of the filaments and the flowfields in Case Study 2 at intervals of four seconds 
from t = 4 throught r = 60 s. 
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- 
- 
ZE 
0 9.50 
- I * 

FIG. 12. Case Study 2. Mean average dissipation of znsrgy vs periild (I period =C 15 S? 
EPS = Q.002 ). 

Frc. 13. Case Study 2. Mean swimming speeds of the filaments -his period. The upper curve i ‘C‘s : 
corresponds to :he top filament and the lower curve (*‘s: to the bottom filament EPS = 0.002. 



3Do
LISA


J.
FAUCI


PHASE
DIFF.
VS.
TIME
:CASE


STUD’i
=o
TIME


FIG.
14.


Case


S

t

u

d

y

 

2

.

 

T

h

e

 

p

h

a

s

e

 

d

i

f

f

e

r

e

n

c

e

 

v

s

 

t

i

m

e

 

a

r

r

i

v

e

d

 

a

t

 

b

y

 

s

o

l

v

i

n

g

 

t

h

e

 

o

r

d

i

n

a

r

y

 

d

i

f

f

e

r

e

n

t

i

a

l

 

e

q

u

a

t

i

o

n

 

f

o

r

 

f

#

~

.

 

domain. In this case study, the energy dissipation is not minimized as before, but 
the average swimming speeds of the sheets is maximized. 

Again, we also use the ordinary differential equation to analyze the change in the 
phase difference of neighboring filaments in Case Study 2. The results are shown in 
Fig. 14. 

5. CONCLUSIONS 

In this paper we applied the immersed boundary technique to computationally 
model the interaction of oscillating filaments in an incompressible, viscous fluid. We 
have evidence which suggests that, indeed, the least amount of energy is dissipated 
when the filaments wave in-phase, as G. I. Taylor showed for zero Reynolds 
number, small amplitude motion. However, we also have evidence that the mean 
swimming velocities are maximized when the filaments are in opposite phase. 

We conjecture that the in-phase case and opposite-phase case are equilibria, and 
that one of these is stable and the other unstable-depending upon the Reynolds 
number and the proximity of the filaments. We would like to know what this 
dependence is. The question of phase-locking or “opposite” phase-locking of an 
array of oscillating filaments, to our knowledge has not been addressed analytically. 
Using the immersed boundary technique, we are able to follow the evolution of this 
nonlinear dynamical system for fixed parameter values. Together with the ordinary 
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differential equation formula of the change in phase difference> we have an economi- 
cal algorithm which tests for phase-iocking or “opposite” phase-locking. We 
propose to do further tests to determine what the conditions on the parameters are 
in either case. 
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